top of page
NAR cover image - uncovering translation roadblocks during the development of a synthetic tRNA

Uncovering translation roadblocks during the development of a synthetic tRNA

October 14, 2022

Cain, A., Krahn, N. (2024). Overcoming challenges with biochemical studies of selenocysteine and selenoproteins. International Journal of Molecular Sciences, 25(18), 10101.

Weiss, J.W., Decker, J.C., Bolano, A., Krahn, N. (2024). Tuning tRNAs for improved translation. Frontiers in Genetics, 15.

Evans, R.M., Krahn, N., Weiss, J., Vincent, K.A., Söll, D., & Armstrong, F.A. (2024). Replacing a cysteine ligand by selenocysteine in a [NiFe]-hydrogenase unlocks hydrogen production activity and addresses the role of concerted proton-coupled electron transfer in electrocatalytic reversibility. Journal of the American Chemical Society, 146(25), 16971-16976.

Krahn, N., Zhang, J., Melnikov, S. V., Tharp, J. M., Villa, A., Patel, A., Howard, R. J., Gabir, H., Patel, T. R., Stetefeld, J., Puglisi, J., & Söll, D. (2024). tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut. Nucleic Acids Research, 52(2), 513-524.

Nunes, L. G. A., Cain, A., Comyns, C., Hoffmann, P. R., & Krahn, N. (2023). Deciphering the role of selenoprotein M. Antioxidants, 12(11), 1906.

Hoffman, K. S., Chung, C. Z., Mukai, T., Krahn, N., Jang, H. K., Balasuriya, N., O'Donoghue, P., & Söll, D. (2023). Recoding UAG to selenocysteine in Saccharomyces cerevisiae. RNA (New York, N.Y.), 29(9), 1400-1410.

Morosky, P., Comyns, C., Nunes, L. G. A., Chung, C. Z., Hoffmann, P. R., Söll, D., … Krahn, N. (2023). Dual incorporation of non-canonical amino acids enables production of post-translationally modified selenoproteins. Frontiers in Molecular Biosciences, 10, 30.

Chung, C. Z., & Krahn, N. (2022). The selenocysteine toolbox: A guide to studying the 21st amino acid. Archives of Biochemistry and Biophysics, 730, 109421.

Patel, A., Mulder, D. W., Söll, D., & Krahn, N. (2022). Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. Frontiers in Catalysis, 2, 28.

Meng, K., Chung, C. Z., Söll, D., & Krahn, N. (2022). Unconventional genetic code systems in archaea. Frontiers in Microbiology, 13, 1007832.

Chung, C. Z., Söll, D., & Krahn, N. (2022). Using selenocysteine-specific reporters to screen for efficient tRNASec variants. Methods in enzymology (Vol. 662, pp. 63–93). Academic Press.

Prabhakar, A., Krahn, N., Zhang, J., Vargas-Rodriguez, O., Krupkin, M., Fu, Z., … Others. (2022). Uncovering translation roadblocks during the development of a synthetic tRNA. Nucleic Acids Research, 50(18), 10201–10211.

Krahn, N., Söll, D., & Vargas-Rodriguez, O. (2022). Diversification of aminoacyl-tRNA synthetase activities via genomic duplication. Frontiers in Physiology, 13, 983245.

Chung, C. Z., Krahn, N., Crnković, A., & Söll, D. (2022). Intein-based design expands diversity of selenocysteine reporters. Journal of Molecular Biology, 434(8), 167199.

Chung, C. Z., Miller, C., Söll, D., & Krahn, N. (2021). Introducing selenocysteine into recombinant proteins in Escherichia coli. Current Protocols, 1(2), e54.

Evans, R. M., Krahn, N., Murphy, B. J., Lee, H., Armstrong, F. A., & Söll, D. (2021). Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance. Proceedings of the National Academy of Sciences, 118(13), e2100921118.

Krahn, N., Tharp, J. M., Crnković, A., & Söll, D. (2020). Engineering aminoacyl-tRNA synthetases for use in synthetic biology. The Enzymes (Vol. 48, pp. 351–395). Elsevier.

Krahn, N., Fischer, J. T., & Söll, D. (2020). Naturally occurring tRNAs with non-canonical structures. Frontiers in Microbiology, 11, 596914.

Tharp, J. M., Krahn, N., Varshney, U., & Söll, D. (2020). Hijacking translation initiation for synthetic biology. ChemBioChem, 21(10), 1387–1396.

Publication list

bottom of page